Intravital imaging of the kidney using multiparameter multiphoton microscopy.

نویسندگان

  • Kenneth W Dunn
  • Ruben M Sandoval
  • Bruce A Molitoris
چکیده

Intravital optical microscopy provides a powerful means of studying the cell biology in the most physiologically relevant setting. The ability of multiphoton microscopy to collect optical sections deep into biological tissues has opened up the field of intravital microscopy to high-resolution studies of multiple organs. Presented here are examples of how two-photon microscopy can be applied to intravital studies of kidney physiology and the study of disease processes. These include studies of cell vitality and apoptosis, fluid transport, receptor-mediated endocytosis, blood flow, and leukocyte trafficking. Efficient two-photon excitation of multiple fluorophores permits comparison of multiple probes and simultaneous characterization of multiple parameters. Two-photon microscopy can now provide a level of investigation previously unattainable in intravital microscopy, enabling kinetic analyses and physiological studies of the organs of living animals with subcellular resolution. Therefore, application of this technology will provide direct visualization of organ-specific and cell-specific responses to an array of stimuli and therapeutic approaches, enhancing our understanding and treatment of disease processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated motion artifact removal for intravital microscopy, without a priori information

Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe l...

متن کامل

Novel in vivo techniques to visualize kidney anatomy and function

Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal r...

متن کامل

Can kidney regeneration be visualized?

BACKGROUND Various cell types, including podocytes and parietal epithelial cells, play important roles in the development and progression of glomerular kidney diseases, albuminuria, and glomerulosclerosis. Besides their role in renal pathologies, glomerular cells have emerging new functions in endogenous repair mechanisms. A better understanding of the dynamics of the glomerular environment and...

متن کامل

Recent advances in intravital imaging of dynamic biological systems.

Intravital multiphoton microscopy has opened a new era in the field of biological imaging. Focal excitation of fluorophores by simultaneous attack of multiple (normally "two") photons generates images with high spatial resolution, and use of near-infrared lasers for multiphoton excitation allows penetration of thicker specimens, enabling biologists to visualize living cellular dynamics deep ins...

متن کامل

Usefulness of Intravital Multiphoton Microscopy in Visualizing Study of Mouse Cochlea and Volume Changes in the Scala Media

Conventional microscopy has limitations in viewing the cochlear microstructures due to three-dimensional spiral structure and the overlying bone. But these issues can be overcome by imaging the cochlea in vitro with intravital multiphoton microscopy (MPM). By using near-infrared lasers for multiphoton excitation, intravital MPM can detect endogenous fluorescence and second harmonic generation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nephron. Experimental nephrology

دوره 94 1  شماره 

صفحات  -

تاریخ انتشار 2003